search

UMD     This Site





Some possibilities for configuring an ant-like microrobot.

Some possibilities for configuring an ant-like microrobot.

 

A team of Clark School faculty from the Institute for Systems Research, the Electrical and Computer Engineering Department and the Mechanical Engineering Department has won a three-year, $1.5 million National Science Foundation grant for Ant-Like Microrobots?Fast, Small, and Under Control. Assistant Professor Nuno Martins (ECE/ISR) is the principal investigator. Co-PIs are Associate Professor Pamela Abshire (ECE/ISR), Associate Professor Elisabeth Smela (ME), and Assistant Professor Sarah Bergbreiter (ME/ISR).

No robots at the sub-cm3 scale exist because their development faces a number of open challenges. This research will identify and determine means for solving these challenges. In addition, it will provide new solutions to outstanding questions about resource-constrained algorithms, architectures, and actuators that can be widely leveraged in other applications.

The team will discover new fundamental principles, design methods, and technologies for realizing distributed networks of sub-cm3, ant-sized mobile microrobots that self-organize into cooperative configurations. The scope of the project involves work in:

?Distributed algorithms for distributed coordination and formation control under severe power, communication, and mobility constraints,

?Minimal electronics hardware for robot control using event-based communication and computation, ultra-low-power radio, and adaptive analog-digital integrated circuits,

?Methods of locomotion and efficient actuators using rapid-prototyping and MEMS technologies that can operate robustly under real-world conditions,

?Integrating the algorithms, electronics, and actuators into a fleet of ant-size microrobots.

These microrobots could be used for applications as diverse as search and rescue during disaster relief efforts, manufacturing, warehouse management, ecological monitoring, intelligence and suveillance, infrastructure and equipment monitoring, metrology, and medical applications such as cell manipulation and microfactories.



Related Articles:
UMD Opens Outdoor Flight Laboratory to Advance Autonomy, Robotics
Bergbreiter and students win NTF Award at IROS 2011
IEEE Spectrum features story on jumping robots
New REU site to offer research opportunities in miniature robotics
Sarah Bergbreiter wins NSF CAREER Award
S.K. Gupta awarded NSF grant for autonomous optical manipulation of cells
Nikhil Chopra receives NSF grant for wireless sensor and robotic networks

September 25, 2009


«Previous Story  

 

 

Current Headlines

University of Maryland School of Engineering Announces Unprecedented Investment from A. James & Alice B. Clark Foundation

UMD Researchers Develop Stable, Robust Li-ion Battery Chemistry

Five ISR faculty part of $8 million NIH grant to combat hearing loss in older people

Building Together Announcement Garners Extensive Media Coverage

Maryland Power Electronics Laboratory participates in Maryland Manufacturing Day

The Home of the Future

Espy-Wilson's technology included in new Alcatel MOVE TIME smart watch

John Baras named AIAA Associate Fellow

Empowering Voices in Engineering

Research Spearheaded by UMD Receives NSF RAPID Support

 
 
Back to top  
Home Clark School Home UMD Home