search

UMD     This Site





Some possibilities for configuring an ant-like microrobot.

Some possibilities for configuring an ant-like microrobot.

 

A team of Clark School faculty from the Institute for Systems Research, the Electrical and Computer Engineering Department and the Mechanical Engineering Department has won a three-year, $1.5 million National Science Foundation grant for Ant-Like Microrobots?Fast, Small, and Under Control. Assistant Professor Nuno Martins (ECE/ISR) is the principal investigator. Co-PIs are Associate Professor Pamela Abshire (ECE/ISR), Associate Professor Elisabeth Smela (ME), and Assistant Professor Sarah Bergbreiter (ME/ISR).

No robots at the sub-cm3 scale exist because their development faces a number of open challenges. This research will identify and determine means for solving these challenges. In addition, it will provide new solutions to outstanding questions about resource-constrained algorithms, architectures, and actuators that can be widely leveraged in other applications.

The team will discover new fundamental principles, design methods, and technologies for realizing distributed networks of sub-cm3, ant-sized mobile microrobots that self-organize into cooperative configurations. The scope of the project involves work in:

?Distributed algorithms for distributed coordination and formation control under severe power, communication, and mobility constraints,

?Minimal electronics hardware for robot control using event-based communication and computation, ultra-low-power radio, and adaptive analog-digital integrated circuits,

?Methods of locomotion and efficient actuators using rapid-prototyping and MEMS technologies that can operate robustly under real-world conditions,

?Integrating the algorithms, electronics, and actuators into a fleet of ant-size microrobots.

These microrobots could be used for applications as diverse as search and rescue during disaster relief efforts, manufacturing, warehouse management, ecological monitoring, intelligence and suveillance, infrastructure and equipment monitoring, metrology, and medical applications such as cell manipulation and microfactories.



Related Articles:
Tuna-Inspired Mechanical Fin Could Boost Underwater Drone Power
MATRIX Lab Establishes Industry Advisory Board
Developing Efficient Systems for Deep Sea Exploration
MATRIX Lab Hiring Research Development Director
State-of-the-Art 3D Nanoprinter Now at UMD
Six Clark School Faculty Receive 2024 DURIP Awards
Bio-Nose Technology: Conferring a Sense of Smell
Maryland Engineers Awarded Grants to Address Humanity's Grand Challenges
Big Ten Network spotlights Maryland Engineering
Deepfake Detection Invention Discerns Between Real and Fake Media

September 25, 2009


«Previous Story  

 

 

Current Headlines

Tuna-Inspired Mechanical Fin Could Boost Underwater Drone Power

Celebrating APIDA and SWANA Maryland Engineers

MATRIX Lab Establishes Industry Advisory Board

Developing Efficient Systems for Deep Sea Exploration

UMD Researchers Win Top Honor for Advancing Hardware Security

Legacy of Excellence: ISR Professor Wins Coveted Recognition

The Clark School Celebrates Women and Multiracial Engineers and Engineering Professionals

MATRIX Lab Hiring Research Development Director

Maryland Applied Graduate Engineering Launches Cutting-Edge AI Graduate Program for Fall 2025

Ingestible Capsule Advances May Lead to Earlier Detection of Diseases

 
 
Back to top  
Home Clark School Home UMD Home