search

UMD     This Site





Professor AndréTits (ECE/ISR) is the co-principal investigator for a new Department of Energy (DoE) grant, ?Interior-Point Algorithms for Optimization Problems with Many Constraints.? The Principal Investigator for this grant is Professor Dianne O?Leary (CS/UMIACS). The three-year, $303,701 grant continues the research of an earlier grant in the same area.

About the research
The researchers will develop, analyze, and test algorithms for the solution of optimization problems with a very large number of inequality constraints, specifically, many more inequality constraints than variables. These types of problems arise, for example, in support vector machine training (for classification of data), network problems, and fine discretizations of semi-infinite programming problems such as those arising from partial differential equation models.

The researchers will consider problems related to linear programming (LP), convex or indefinite quadratic programming, and convex programming, as well as more general nonlinear programming.

Under the earlier grant, the PIs and their collaborators developed a framework for constraint reduction. For LP (i.e., minimization/maximization of a linear function subject to linear constraints), the idea is as follows. The solution of an LP is entirely determined by its objective function and a subset of the constraints, usually of size equal to the number of variables. Accordingly if the number of inequality constraints is much larger than the number of variables, then most of the constraints are, in a sense, irrelevant. Unfortunately, it is unknown at the outset which these are. This is what makes an LP hard to solve.

The framework already developed by AndréTits and Dianne O?Leary adaptively identifies, at each iteration of the solution process, a small set of seemingly critical constraints, and determines a search direction based on those constraints only. The algorithm was validated by theoretical analysis and numerical experimentation for linear and quadratic programming.

This new grant will allow the researchers to:

?Investigate approaches to efficiently deal with situations when the problem is ?sparse" (i.e., each variable is involved in only a small number of constraints);

?Improve the performance of algorithms to train support-vector machines, used for classifying data;

?Extend the work to general nonlinear programming (problems with nonlinear constraints); and

?Apply the techniques to entropy-based moment closure in gas dynamics.

Applications
As has been the case with previous algorithms and software developed by AndréTits and his coauthors (CFSQP, FFSQP, RFSQP and a number of Matlab scripts), the algorithms and software that will come out of the proposed research should have a significant impact in a wide range of application areas. This includes many areas of engineering (chemical, mechanical, electrical, transportation, controls...), but also areas such as medical research (epidemiology, oncology, radiology), statistics, finance and astronomy.

The work already completed under the earlier grant has had many connections to DoE labs; the new grant should produce algorithms and software of use to DoE as well as to the broader community. For example, algorithms to train SVMs could help detect anomalies in network interactions for homeland security, identify specific genome features, find supernovae, and estimate direction-of-arrival in signal processing.



Related Articles:
Gabriel is co-PI on project coordinating Denmark's energy sectors
Optimization model for outpatient cardiology scheduling published in Operations Research for Health Care
Fu, Marcus team for new AFOSR project on simulation optimization
S. Raghu Raghavan is PI for NSF project on illicit drug trafficking networks
New model can help decisionmakers planning to retrofit buildings for energy efficiency
Computational framework automatically optimizes the shape of tissue engineered vascular grafts
Srivastava wins NSF funding for integrated circuit fabrication security
A novel statistical idea: 'Down-Up' sequences that 'capture' small tail probabilities
Nuno Martins, alum Shinkyu Park and Jeff Shamma lead tutorial session at IEEE CDC 2019
Hybrid compositional planning for UAV rescue missions

September 28, 2009


«Previous Story  

 

 

Current Headlines

Proloy Das Receives Honorable Mention in Charles Caramello Distinguished Dissertation Competition

Alum Victor De Oliveira elected Fellow of American Statistical Association

Alum Himanshu Tyagi promoted to Associate Professor at  Indian Institute of Science

Firebird Tour Makes Stop in St. Mary’s County

Chapin, Fiaz and Mavridis win Wylie Dissertation Fellowships

Nikolas Francis on the Neurophysiology of Listening

UMD Researchers to Design Greener Aircraft Engine

Voice-activated telehealth technology could strengthen patient-physician connection

Maryland Joins NSF-funded Effort to Help Set Nation's Direction for Engineering

Biofilm-fighting system for urinary catheters proves effective in simulated environment

 
 
Back to top  
Home Clark School Home UMD Home