search

UMD     This Site





Professor Prakash Narayan (ECE/ISR) is the principal investigator for a three-year, $600K National Science Foundation grant for Shared Information: Theory and Applications.

The research will develop the concept of shared information as a fundamental, quantifiable, and compact measure for capturing interdependence among multiple correlated signals. It will emulate and enhance the spirit of Claude Shannon’s celebrated and enormously consequential notion of mutual information, which constitutes a measure of correlation between two random signals.

Narayan will investigate the role of shared information for operational meanings in network information theory with implications for related communication applications, and as a self-contained, compact, and calculable figure-of-merit that can be optimized in learning applications where statistical correlation is of central interest.

His goal is to establish central theoretical and practical roles for shared information in network data compression, distributed function computation, reliable and secure information transmission in networks, signal cluster detection, and a new category of statistical estimation and learning algorithms. Engineering applications include communication and signal processing in a smart home, satellite image reconstruction, and messaging protocols in automated guided vehicles and drone swarms.

Rooted in information theory, the research will connect to algorithms in combinatorial graph theory (in theoretical computer science) and correlated multiarmed bandits (in learning). It aims to create advances in network information theory through new models and methods that highlight interactive communication among terminals, with the concept of shared information serving as a linchpin. Links to important problems in combinatorial algorithms, by way of shared information, highlight interpretations that promise new understanding and solutions.

The estimation of shared information using correlated multiarmed bandits will introduce models, concepts, and algorithms in an essential fledgling realm of machine learning. The research will pull methods from information theory, Markov random fields, combinatorial graph theory, and statistical inference. Outcomes will include interactive techniques for multiuser data compression and channel transmission, algorithms for combinatorial tree packing, methods for detecting clusters of correlated signals, and bandit algorithms for parameter estimation in correlated signals.



Related Articles:
Five Clark School authors part of new 'Age of Information' book
Algorithms balance learning speeds across tasks in communication networks
Alum Ahmed Arafa wins NSF CAREER Award
Sennur Ulukus receives 2020 IEEE ComSoc WICE Outstanding Achievement Award
Ulukus, Modiano guest-edit IEEE journal special issue on Age of Information
Alumnus Ravi Tandon earns tenure at University of Arizona
S. Raghu Raghavan is PI for NSF project on illicit drug trafficking networks
Real-time remote reconstruction of signals for the Internet of Things
Alumnus Raef Bassily joins Ohio State as tenure-track faculty
New NSF-funded project targets secure and private function computation

May 21, 2023


«Previous Story  

 

 

Current Headlines

Tuna-Inspired Mechanical Fin Could Boost Underwater Drone Power

Celebrating APIDA and SWANA Maryland Engineers

MATRIX Lab Establishes Industry Advisory Board

Developing Efficient Systems for Deep Sea Exploration

UMD Researchers Win Top Honor for Advancing Hardware Security

Legacy of Excellence: ISR Professor Wins Coveted Recognition

The Clark School Celebrates Women and Multiracial Engineers and Engineering Professionals

MATRIX Lab Hiring Research Development Director

Maryland Applied Graduate Engineering Launches Cutting-Edge AI Graduate Program for Fall 2025

Ingestible Capsule Advances May Lead to Earlier Detection of Diseases

 
 
Back to top  
Home Clark School Home UMD Home