search

UMD     This Site





Associate Professor Edo Waks (ECE/IREAP) is the principal investigator and Professor Benjamin Shapiro (BioE/ISR) is co-PI on a two-year, $300K NAS BRAIN EAGER grant, ?Wireless Measurement of Neuronal Currents Using Spin-Torque Nano-Oscillators.?

The brain is a complex network of interconnected circuits that exchange signals in the form of ?action potentials,? which hold the key to understanding cognition and complex thought. Currently available non-invasive methods for probing neuronal activity are limited because they cannot achieve sufficient spatial or temporal resolution to observe individual action potentials from single neurons or small clusters.

Waks and Shapiro will develop a novel approach for non-invasive measurements that can read out individual action potentials across the entire brain. Their project will take advantage of recent advances in spintronic devices to create injectable nano-reporters. These nano-reporters will detect weak electrical signals in the brain and convert them to microwave signals that can be detected wirelessly outside the body using a spin-torque nano-oscillator (STNO). This approach could ultimately lead to the first non-invasive technology capable of measuring activations of individual neurons and small-scale neuronal networks in primates and humans, and could have a major impact on the understanding of the inner workings of the brain and cognition. The approach also could have important clinical applications, particularly in neurological disorders and brain machine interfaces.

About the STNO
The STNO is a nanoscale device and can report on the firing and location of a single neuron. It responds in microseconds to electric signals, and thus can be directly used to measure individual neuronal action potentials. This project represents the first application of the exciting and rapidly evolving field of spintronics to neurobiology. A test system will be developed that includes a neuron simulator (a tunable circuit that simulates the voltages and impedance of a single neuron) and a high-sensitivity microwave receiver to demonstrate the ability of these devices to wirelessly report the activation state of a neuron. This project also involves the design, fabrication, and test optimization of STNO devices for neurobiological applications. The ultimate and specific goal is to perform a proof-of-concept demonstration of the apparatus on a live axon.

This award is made jointly by two NSF programs: the Instrument Development for Biological Research program (IDBR) and Emerging Frontiers (EF) in the Directorate of Biological Sciences (BIO).



Related Articles:
Researchers part of two NSF Neural & Cognitive Systems grants worth more than $1.2 million
UMD's Kanold and Losert, NIMH's Plenz receive $1.7M BRAIN Grant
Yin, Fritz, Shamma publish neuroplasticity study in Journal of Neuroscience
?Cocktail party effect? helps us focus in noisy environments
Jonathan Simon selected for National Academies' NAKFI conference
BBI FY17 Seed Grant Winners Announced
Fritz, Shamma are collaborators on new DARPA Targeted Neuroplasticity Training Program
Kanold study shows autism may begin early in brain development
NSF Science Now video features 'aging brain' research of Anderson, Simon and Presacco
It’s not your ears, it’s your brain

September 3, 2014


«Previous Story  

 

 

Current Headlines

Clark School Participates in Solar Eclipse

Researchers part of two NSF Neural & Cognitive Systems grants worth more than $1.2 million

ISR researchers win additional $948K NSF Neural and Cognitive Systems grant

Schonfeld, Ryzhov team up for NSF EAGER grant

Yu Named ASME Fellow

Khaligh-led student team wins award at IEEE IFEC competition

Former postdoc Eirini Tsiropoulou named to IEEE ComSoc "rising stars" list

TEDCO Invests $1M into Innovative Companies Including Rajeev Barua’s Startup SecondWrite LLC

Banis wins poster design award at Global Grand Challenges Summit

ISR faculty leading bio-inspired robotics and transportation electrification REUs

 
 
Back to top  
Home Clark School Home UMD Home