search

UMD     This Site






Within the brain, individual neurons are drastically variable and unreliable. Yet, when these same neurons act together in a network, they enable robust brain function and precise behavioral outcomes. How is this possible? The answer to this question may help to improve prosthetics for people with parapalegia and make possible reconfigurable neuromorphic devices.

The advent of large-scale neural recording technologies, such as two-photon calcium imaging, has enabled scientists and engineers to study the activity of large populations of neurons and decipher how they collectively encode and distill information from the external world to elicit robust behavior. However, to make full use of this data, computationally efficient and mathematically principled techniques for robust network-level inference are needed.

New research by Associate Professor Behtash Babadi (ECE/ISR) will develop methodologies to infer network-level characteristics of ensemble neuronal activity from two-photon imaging data, and will apply these methods to large-scale recordings. These methodologies will help reveal the computational principles that underlie sensory processing and behavior.

Babadi is the principal investigator for a three year, $360K National Science Foundation Electrical, Communications and Cyber Systems grant, “Robust Network-Level Inference from Neuronal Data Underlying Behavior.”

In the research, Babadi will develop a robust framework for joint inference of the intrinsic and stimulus-driven correlations of neuronal activity and design a functional taxonomy to characterize the relevance of neuronal activity to sensory processing and behavioral outcomes. He also will construct an estimation framework for capturing the dynamics and functional relevance of higher-order synchronous neuronal activity.

This project addresses several challenges faced by existing methodologies, including biased network characterization incurred by two-stage analysis pipelines, intermixing the contributions of exogenous and endogenous processes to collective neuronal activity, and studying sensory processing and behavioral elicitation as disjoint problems. By employing two-photon calcium imaging data from mice and zebrafish, the modeling and estimation framework will be used to investigate several fundamental problems in systems neuroscience, such as tonotopic diversity in the auditory cortex, interaction of sensory processing and decision-making, and visuo-motor coordination.

The project will provide signal processing solutions that can be used in neural control and neuromorphic systems such as improving neural prosthetics used by people with paraplegia. In these prosthetics, signals from the brain are used to decode the motor intent of the user. However, the signals are quite noisy and are modulated by the user's behavior, so accurate decoding currently is an unresolved challenge. Babadi’s research will shed some light on how to increase the accuracy of the decoded behavioral intents from neural recordings.

In addition, understanding how the brain performs rapid reconfigurations could help researchers design reconfigurable neuromorphic devices. Currently, most artificial intelligence architectures are static—when the system is trained, the structure is fixed and users send in an input and receive an output. The brain, however, is constantly reconfiguring its internal connections to adapt to the changes in the environment, and accordingly adjusts behavioral outcome. If neuromorphic devices could work more like the brain function, they would be more robust and useful.

 



Related Articles:
New methodology to estimate neural activity published by eLife
‘Priming’ helps the brain understand language even with poor-quality speech signals
New UMD Division of Research video highlights work of Simon, Anderson
Autism Research Resonates in Hearing-Focused Project
Training Can Improve Older Adults’ Ability to Discriminate Rapid Changes in Sound
Uncovering the mysteries of networking in the brain
Poster Session Cinches Banner Year for UMD Neuroscience
Announcing the BBI Small Animal MR Facility
Exploring the 'rules of life' of natural neuronal networks could lead to faster, more efficient computers
How Home Alone Helped UMD Neuroscientists Unlock Brain Scan Data

August 25, 2020


«Previous Story  

 

 

Current Headlines

Srivastava Named Inaugural Director of Semiconductor Initiatives and Innovation

State-of-the-Art 3D Nanoprinter Now at UMD

UMD, Partners Receive $31M for Semiconductor Research

Two NSF Awards for ECE Alum Michael Zuzak (Ph.D. ’22)

Applications Open for Professor and Chair of UMD's Department of Materials Science and Engineering

Ghodssi Honored With Gaede-Langmuir Award

Milchberg and Wu named Distinguished University Professors

New features on ingestible capsule will deliver targeted drugs to better treat IBD, Crohn’s disease

Forty years of MEMS research at the Hilton Head Workshop

Baturalp Buyukates (ECE Ph.D. ’21) Honored by IEEE ComSoc

 
 
Back to top  
Home Clark School Home UMD Home