search

UMD     This Site





New research on multi-information sources of multiphysics systems was published Oct. 25 online in the Journal of Aerospace Information Systems. Sequential Information-Theoretic and Reification-Based Approach for Querying Multi-Information Sources was written by Seyede Fatemeh Ghoreishi, a postdoctoral researcher working with ISR-affiliated Assistant Professor Mark Fuge (ME) and Assistant Professor Axel Krieger (ME); Dillon Tomison of Lockheed Martin; and Douglas Alliare, an Assistant Professor in the Department of Mechanical Engineering at Texas A&M University.

The work was supported by the Air Force Office of Scientific Research Multi-Disciplinary University Research Initiative on multi-information sources of multiphysics systems under award number FA9550-15-1-0038, and by the National Science Foundation under grant number CMMI-1663130.

About the research
While the growing number of computational models available to designers can solve a lot of problems, it complicates the process of properly using the information provided by each simulator. It may seem intuitive to select the model with the highest accuracy, or fidelity, as decision makers want the greatest degree of certainty to increase their efficacy. However, high-fidelity models often come at a high computational expense. While comparatively lacking in veracity, low-fidelity models do contain some degree of useful information that can be obtained at a low cost.

The paper proposes a sequential method to use this information to generate a fused model with predictive capability superior to any of its constituent models. The researchers’ methodology estimates the correlation between each model using a model reification approach that eliminates the observational data requirement. The correlation is then used in an updating procedure whereby uncertain outputs from multiple models may be fused together to better estimate some quantity or quantities of interest. These ingredients are used in a decision-theoretic manner to query from multiple information sources sequentially to achieve the maximum knowledge about the fused model in as few information source evaluations as possible with minimum cost. This approach has the potential to significantly improve information fusion from multifidelity information sources.



Related Articles:
Barg honored with 2024 IEEE Richard W. Hamming Medal
Barg is PI for new quantum LDPC codes NSF grant
Narayan receives NSF funding for shared information work
Forthcoming information-theoretic cryptography book co-written by alum Tyagi and former visitor Watanabe
New quantum framework yields generalizations of bosonic ‘cat codes’
Five Clark School authors part of new 'Age of Information' book
Alum Ahmed Arafa wins NSF CAREER Award
An information theoretic approach to improving group infection testing
Dana Dachman-Soled is Program Chair for ITC 2022
A gachapon ‘blind box’ for private information retrieval

October 30, 2019


«Previous Story  

 

 

Current Headlines

Srivastava Named Inaugural Director of Semiconductor Initiatives and Innovation

State-of-the-Art 3D Nanoprinter Now at UMD

UMD, Partners Receive $31M for Semiconductor Research

Two NSF Awards for ECE Alum Michael Zuzak (Ph.D. ’22)

Applications Open for Professor and Chair of UMD's Department of Materials Science and Engineering

Ghodssi Honored With Gaede-Langmuir Award

Milchberg and Wu named Distinguished University Professors

New features on ingestible capsule will deliver targeted drugs to better treat IBD, Crohn’s disease

Forty years of MEMS research at the Hilton Head Workshop

Baturalp Buyukates (ECE Ph.D. ’21) Honored by IEEE ComSoc

 
 
Back to top  
Home Clark School Home UMD Home