search

UMD     This Site





Inspired by the beauty and flying ability of birds, Leonardo da Vinci strived centuries ago to create a human-powered flapping-wing flying machine. But his designs, which da Vinci explored in his Codex on the Flight of Birds, were never developed in any practical way. Even today, mimicking bird flight still presents challenges due to the physiological complexity of a bird’s flapping wings.

For years, researchers at the University of Maryland’s A. James Clark School of Engineering have been moving ever closer to imitating bird flight with Robo Raven, the first bird-inspired unmanned aerial vehicle (UAV) that has successfully flown with independent wing control.

Lena Johnson (’14, M.S. ’16), who is pursuing her Ph.D. in mechanical engineering, is working on the current iteration of the aerodynamic robotic bird, known as Robo Raven V. The doctoral student believes Robo Raven gives her a platform to make the impossible possible by designing a UAV with greater controllability and likelihood of sustained wing-powered flight than other similar vehicles.

Johnson hopes that this version’s expanded maneuverability, developed takeoff capability, and added propellers for thrust production will aid the UAV in areas she’s researching, such as ecological monitoring and disaster response.

Johnson also wants to share her work on Robo Raven in local schools and libraries in hopes of inspiring other young students that they, too, can make the impossible possible through engineering.

“There are so many kids in disadvantaged communities who have never even dreamed of becoming an engineer. It takes just one role model or exposure through an after-school robotics program to turn on that light of possibility,” says Johnson.

Robo Raven was pioneered in 2008 by Clark School Professors S.K. Gupta and Hugh Bruck. Gupta and Bruck wanted to develop a robotic bird that was quick and multifaceted for many applications, both civilian and military.

Learn more about robotics at the Clark School! Visit the Institute for Systems Research and the Maryland Robotics Center websites.



Related Articles:
These are tiny robots. And they are awesome.
Maryland Robotics Center sponsors grad student project on robotics in farming
Shneiderman to speak at Arena Civil Dialogue, Aug. 12
GapFlyt helps aerial robots navigate more like birds and insects
Dinesh Manocha, developer of geometric and scientific algorithms, is new ISR affiliate
New affiliate faculty Mark Fuge is expert in machine learning and artificial intelligence
Why a robot can't yet outjump a flea
Maryland researchers awarded DARPA cooperative agreement to develop robotic swarm strategies
Alumnus Philip Twu's exciting career in space robotics
Alumnus Xiaobo Tan named Withrow Distinguished Scholar at Michigan State

September 17, 2018


«Previous Story  

 

 

Current Headlines

The App that Fights Congestion, Emissions

Can Cascading Pools Help Restore the Chesapeake Bay?

Maryland students place third in autonomous drone race

Bhattacharyya awarded NIH Grant to Explore Real-time Neural Decoding for Calcium Imaging

UMD Transportation Experts Awarded $1 Million DOE Grant to Reduce Transportation Energy Use and Emissions

With Engineering Projects, UMD Students Seek to Boost Education Access, Public Health, and Sustainability

Maryland Robotics Center students participate in FAA STEM outreach event

Shoukry, Krishnaprasad receive NSF grant for resilient-by-cognition cyber-physical systems

Maryland Robotics Center sponsors grad student project on robotics in farming

UMD researchers awarded $1M NSF grant to develop new methods to generate single photons for quantum research

 
 
Back to top  
Home Clark School Home UMD Home