search

UMD     This Site






Researchers have found a way to coat corrosive but highly energetic lithium metal anodes with an atoms-thick layer of alumina to make lithium-ion batteries last longer.

Alexander Kozen, of the University of Maryland’s Department of Materials Science and the Institute for Systems Research, and his colleague Malachi Noked (also in the Department of Chemistry and Biochemistry,) used a technique borrowed from the semiconductor industry –- atomic layer deposition (ALD) -- to put down a layer of aluminum oxide, 14 nanometers thick, all around the anode.

The research was funded by DOE's Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center. "The mission of the center is to reveal the science of nanostructures in batteries to develop methodologies to help prevent problems," said Gary Rubloff (MSE/ISR), Director of the NEES Center.

Lithium metal is widely known as a promising anode material. But the high reactivity of lithium metal presents major challenges that may impede commercial adoption. Most candidates for a next-generation, beyond-lithium-ion battery rely on using reactive metal anodes. However, with a protection layers, bare lithium metal reacts with organic electrolytes, which can reduce battery  capacity and possibly form tree-shaped dendrites capable of shorting out the battery or causing an explosion.

Kozen said that aluminum oxide is simple and relatively inexpensive to use, though the team says they are investigating other higher performance coatings.

'The technique has been used in computer chip-making, so establishing a  parallel infrastructure  for the  battery industry is reasonable,' said Noked.

The team reports improved lithium-sulfur battery capacity for 100 charge-discharge cycles, an important milestone to demonstrate the efficacy of this technique as a proof of concept.

Results were published in the journal ACS Nano.

 

Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition

Alexander C. Kozen, Chuan-Fu Lin, Alexander J. Pearse, Marshall A. Schroeder, Xiaogang Han,

Liangbing Hu, Sang Bok Lee, Gary W. Rubloff, and Malachi Noked

DOI: 10.1021/acsnano.5b02166

 

June 9, 2015



June 9, 2015


«Previous Story  

 

 

Current Headlines

Srivastava Named Inaugural Director of Semiconductor Initiatives and Innovation

State-of-the-Art 3D Nanoprinter Now at UMD

UMD, Partners Receive $31M for Semiconductor Research

Two NSF Awards for ECE Alum Michael Zuzak (Ph.D. ’22)

Applications Open for Professor and Chair of UMD's Department of Materials Science and Engineering

Ghodssi Honored With Gaede-Langmuir Award

Milchberg and Wu named Distinguished University Professors

New features on ingestible capsule will deliver targeted drugs to better treat IBD, Crohn’s disease

Forty years of MEMS research at the Hilton Head Workshop

Baturalp Buyukates (ECE Ph.D. ’21) Honored by IEEE ComSoc

 
 
Back to top  
Home Clark School Home UMD Home