search

UMD     This Site





Credit:Maryland NanoCenter

Credit:Maryland NanoCenter

 

Wood fibers help nano-scale batteries keep their structure

A sliver of wood coated with tin could make a tiny, long-lasting, efficient and environmentally friendly battery.

But don’t try it at home yet– the components in the battery tested by scientists at the University of Maryland are a thousand times thinner than a piece of paper. Using sodium instead of lithium, as many rechargeable batteries do, makes the battery environmentally benign. Sodium doesn’t store energy as efficiently as lithium, so you won’t see this battery in your cell phone  -- instead, its low cost and common materials would make it ideal to store huge amounts of energy at once – such as solar energy at a power plant.

Existing batteries are often created on stiff bases, which are too brittle to withstand the swelling and shrinking that happens as electrons are stored in and used up from the battery. Liangbing Hu, Teng Li and their team found that wood fibers are supple enough to let their sodium-ion battery last more than 400 charging cycles, which puts it among the longest lasting nanobatteries.

WATCH: Author Hongli Zhu explains how trees inspired the research

"The inspiration behind the idea comes from the trees," said Hu, an assistant professor in the Department of Materials Science and a member of the University of Maryland Energy Research Center. "Wood fibers that make up a tree once held mineral-rich water, and so are ideal for storing liquid electrolytes, making them not only the base but an active part of the battery."

Lead author Hongli Zhu and other team members noticed that after charging and discharging the battery hundreds of times, the wood ended up wrinkled but intact. Computer models showed that the wrinkles effectively relax the stress in the battery during charging and recharging, so that the battery can survive many cycles. This work was done by Zheng Jia, a graduate student in mechanical engineering.

"Pushing sodium ions through tin anodes often weaken the tin’s connection to its base material,” said Li, an associate professor in the Department of Mechanical Engineering and a member of the Maryland Nanocenter. "But the wood fibers are soft enough to serve as a mechanical buffer, and thus can accommodate tin’s changes.  This is the key to our long-lasting sodium-ion batteries."

The team’s research was supported by the University of Maryland and the U.S. National Science Foundation.

See the full paper at:

Tin Anode for Sodium-Ion Batteries Using Natural Wood Fiber as a Mechanical Buffer and Electrolyte Reservoir

Hongli Zhu, Zheng Jia, Yuchen Chen, Nicholas J. Weadock, Jiayu Wan, Oeyvind Vaaland, Xiaogang Han, Teng Li, and Liangbing Hu

Nano Letters, 2013



Related Articles:
Rubloff and colleagues publish work on improving solid-state battery interface performance
Can LPGS solid-state battery conductor degradation be mitigated?
ARL to Fund $30M in Equipment Innovations for Service Members
UMD Research Team Advances the Battery Revolution
Thin film platforms advance solid-state energy storage
Advance made towards next-generation rechargable batteries
MEI2 leads U.S. side of $18.4M U.S.-Israel Energy Center focused on energy storage
Rubloff is PI for 'Customized Lithium Batteries for Mission Applications'
New Report Recommends a Path for the Future of Maryland’s Clean Energy Economy
Advance could yield safer, longer-range electric car batteries

June 18, 2013


«Previous Story  

 

 

"The inspiration for this battery comes from trees"

Liangbing Hu, Materials Science, UMD

Current Headlines

Srivastava Named Inaugural Director of Semiconductor Initiatives and Innovation

State-of-the-Art 3D Nanoprinter Now at UMD

UMD, Partners Receive $31M for Semiconductor Research

Two NSF Awards for ECE Alum Michael Zuzak (Ph.D. ’22)

Applications Open for Professor and Chair of UMD's Department of Materials Science and Engineering

Ghodssi Honored With Gaede-Langmuir Award

Milchberg and Wu named Distinguished University Professors

New features on ingestible capsule will deliver targeted drugs to better treat IBD, Crohn’s disease

Forty years of MEMS research at the Hilton Head Workshop

Baturalp Buyukates (ECE Ph.D. ’21) Honored by IEEE ComSoc

 
 
Back to top  
Home Clark School Home UMD Home