search

UMD     This Site





A schematic of a hybrid molecular device shows metal electrodes connected by a
percolation pathway composed of dithiol-PZn3-coated Au nanoparticles.

A schematic of a hybrid molecular device shows metal electrodes connected by a percolation pathway composed of dithiol-PZn3-coated Au nanoparticles.

 

The Materials Research Society?s May 2010 MRS Bulletin includes a story on research completed by MSE Ph.D. student Parag Banerjee during a recent internship at the University of Pennsylvania. Banerjee?s advisor is Maryland NanoCenter Director Gary Rubloff (MSE/ISR).

The paper, Plasmon-Induced Electrical Conduction in Molecular Devices, originally appeared in the Feb. 23 issue of the American Chemical Society?s ACS Nano journal. Banerjee?s co-authors are Dawn A. Bonnell, David Conklin, Sanjini Nanayakkara and Tae-Hong Park of the University of Pennsylvania; and Michael J. Therien of Duke University.

The paper demonstrates the ability of surface plasmons to alter the electrical properties of a molecular junction by coupling gold nanoparticle arrays with highly conjugated, chromophoric wires. Since molecular compounds exhibit a wide range of optical and electrical properties, the strategies for fabrication, testing and analysis elucidated in this paper can form the basis of a new set of devices in which plasmon-controlled electrical properties of single molecules could be designed with wide implications to plasmonic circuits and optoelectronic and energy harvesting devices.



Related Articles:
Shapiro wins NSF grant for magnetic focusing of magnetic particle therapies
Profile of alumnus Parag Banerjee
Clark School honors Rajkowski, Beyaz, Banerjee for student research

May 17, 2010


«Previous Story  

 

 

Current Headlines

University of Maryland School of Engineering Announces Unprecedented Investment from A. James & Alice B. Clark Foundation

QUEST Celebrates 25th Anniversary

Alumni Naomi Leonard and Xiaobo Tan part of public lecture on underwater robotics

Clark School Spinout Developing Pediatric Cancer Drug Delivery System to Prevent Hearing Loss from Chemotherapy

UMD Solar Decathlon team takes 1st place in the U.S., 2nd place in the world

UMD Researchers Develop Stable, Robust Li-ion Battery Chemistry

Five ISR faculty part of $8 million NIH grant to combat hearing loss in older people

Building Together Announcement Garners Extensive Media Coverage

Maryland Power Electronics Laboratory participates in Maryland Manufacturing Day

The Home of the Future

 
 
Back to top  
Home Clark School Home UMD Home