search

UMD     This Site





ISR-affiliated Distinguished University Professor Dinesh Manocha (ECE/CS/UMIACS) and Visiting Assistant Research Scientist Amrit Bedi (ISR) are receiving $50K in funding from Amazon Research Awards (ARA) for their AI/machine learning project, “Ensuring Fairness via Federated Learning Beyond Consensus.” The two entered their proposal through the ARA Spring/Summer 2022 call for proposals. Bedi works primarily on the ArtIAMAS research project with Manocha and Professor Derek Paley (AE/ISR).

What is federated learning?

Federated learning is a decentralized way to unlock information that feeds new AI applications and trains existing AI models without individual users’ data being seen or collected. The actual data never leave an individual mobile phone, laptop, or private server.

Federated learning is fast becoming the standard that complies with new regulations for handling and storing private data. It also offers a way to tap raw data streaming from sensors on satellites, bridges, machines, and a growing number of smart devices.

The new technique enables mobile phones to collaboratively learn a shared prediction model while keeping the training data on the device, decoupling the ability to do machine learning from the need to store data in the cloud. Federated learning goes beyond the use of local models that make predictions on mobile devices by bringing model training to the device as well.

A device downloads the current model, improves it by learning from data on the phone, then summarizes the changes as a small focused update. Only this update is sent to the cloud, using encrypted communication. It is then averaged with other user updates to improve the shared model. Training data remains on the device itself; no individual updates are stored in the cloud.

Federated learning produces smarter models, lower latency, and less power consumption, all while ensuring privacy. In addition to providing an update to the shared model, the improved model can also be used immediately on the device for a more personalized experience.



Related Articles:
ISR faculty leading, playing key roles in ARL cooperative agreement
Reinforcement learning is a game for Kaiqing Zhang
CSRankings places Maryland robotics at #10 in the U.S.
NSF funding to Fermüller, Muresanu, Shamma for musical instrument distance learning using AI
UMD papers by Zhang, Manocha groups at ICML 2023
Shneiderman: Faulty machine learning algorithms risk safety, threaten bias
UMD’s SeaDroneSim can generate simulated images and videos to help UAV systems recognize ‘objects of interest’ in the water
Fermüller and Muresanu VAIolin work featured in Maryland Today
Seven UMD Grand Challenges projects include ISR and MRC faculty
'OysterNet' + underwater robots will aid in accurate oyster count

December 19, 2022


«Previous Story  

 

 

Current Headlines

Srivastava Named Inaugural Director of Semiconductor Initiatives and Innovation

State-of-the-Art 3D Nanoprinter Now at UMD

UMD, Partners Receive $31M for Semiconductor Research

Two NSF Awards for ECE Alum Michael Zuzak (Ph.D. ’22)

Applications Open for Professor and Chair of UMD's Department of Materials Science and Engineering

Ghodssi Honored With Gaede-Langmuir Award

Milchberg and Wu named Distinguished University Professors

New features on ingestible capsule will deliver targeted drugs to better treat IBD, Crohn’s disease

Forty years of MEMS research at the Hilton Head Workshop

Baturalp Buyukates (ECE Ph.D. ’21) Honored by IEEE ComSoc

 
 
Back to top  
Home Clark School Home UMD Home