search

UMD     This Site






Associate Professor Alireza Khaligh’s (ECE/ISR) research group has received a new round of funding from The Boeing Company to develop an innovative Gallium Nitride (GaN) semiconductor-based modular power electronic solution for more electric aircraft. This project continues the collaboration between MPEL and Boeing, which has already yielded a Silicon Carbide-based RTRU that is 40 percent lighter and 8 percent more efficient than the current state of the art.

In collaboration with Professor Patrick McCluskey (ME) at the Center for Advanced Life Cycle Engineering (CALCE), the team at the Maryland Power Electronics Laboratory (MPEL) is developing the world’s first wide-bandgap GaN-based modular Rectified Transformer Rectifier Units (RTRU) for commercial aircraft such as the Boeing 787. An RTRU converts AC power generated by (for example) the aircraft's engine or APU generators, for use by various electrical components of the aircraft.

With research on novel circuit topologies and innovative switching schemes enabled by the next-generation wide-bandgap GaN power transistors, the researchers are hopeful they can reduce the RTRU volume by a further 30 percent, while boosting overall reliability and performance of the power electronic system. 

About more electric aircraft

Aircraft use a variety of power sources in their non-propulsive systems—hydraulic, pneumatic, mechanical and electrical. To optimize performance, decrease operating and maintenance costs, increase reliability and reduce fuel emissions, the aircraft industry is developing aircraft that use electric power for all non-propulsive systems. This concept is known as “more electric aircraft.”

This push, which is accelerating, is made possible by recent technological advances in power electronics, fault-tolerant architecture, electro-hydrostatic actuators, flight control systems, high density electric motors, power generation and conversion systems. More electric aircraft are critical in unlocking significant improvements in weight, fuel consumption, total life cycle costs, maintainability and aircraft reliability.

 



Related Articles:
Khaligh is co-PI on new Boeing contract
Alireza Khaligh promoted to full professor
Khaligh, McCluskey to lead new $2.37M DOE solar power converter project
Khaligh working with Boeing on power electronics-based project
Ayan Mallik wins ISR Graduate Student Award
Khaligh-led student team wins award at IEEE IFEC competition
ISR faculty leading bio-inspired robotics and transportation electrification REUs
Khaligh receives Junior Faculty Outstanding Research Award
Khaligh gives keynote speech at ITEC 2016
Khaligh is general chair of 2016 IEEE APEC Conference

February 19, 2018


«Previous Story  

 

 

Current Headlines

Ring Resonators Corner Light

Alireza Khaligh promoted to full professor

Alumna Aisha Al-Obaid to join Kuwait University faculty

Clark School Team to Compete in NASA's RASC-AL Competition

Alum Ahmed Arafa to join UNC Charlotte faculty this fall

Ayan Mallik to join Arizona State University faculty

Sennur Ulukus is plenary speaker at Canadian Workshop on Information Theory

Jiang, Marakby, Vaswani, and Wu named 2019 ECE Distinguished Alumni

Mallik and Ferlic Win Dean's Doctoral and Master's Student Research Awards

UMD Energy Start-Up receives $8M investment

 
 
Back to top  
Home Clark School Home UMD Home